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In [1] the method of integral relations was used to investigate the hydrodynamics and mass
transfer in a liguid layer on a rotating Archimedes spiral in the absence of wave forma-
tion. In the present article we use the work method [2, 3] to investigate the hydrodynamics
and mass transfer in the entrance region in a liquid layer of variable thickness on a
rotating Archimedes spiral.

We consider the flow of a laminar liquid layer on the inner surface of an Archimedes spiral rotating
in the horizontal plane with a constant angular velocity w. The equation of the spiral in polar coordinates is
r=Af, where A>0. The liquid film flows from the center (entrance region) toward the periphery in the
channel formed by the Archimedes spiral. We denote the arc length along the streamlined wall of the spiral
channel from the origin of coordinates (x, y) in the plane of the inlet by x, and the perpendicular distance from
the wall by y. The coordinate system is fixed with respect to the streamlined solid surface. It is assumed
that the pressure is steady, the flows are isothermal, and the diffusion coefficient is constant.

Under these assumptions the problem is described by the Prandtl boundary-layer equations and the
equation of convective diffusion,

ou 9w _p A op 0w u _p 10p du, v, 1
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where D is the diffusion coefficient, R(x)=A(62 + 1)3/2/(6%+ 2) is the radius of curvature of the spiral, and Fy
and Fy are the components of the body forces along the coordinate axes. The body forces acting on a unit mass
of the liquid film are the centrifugal force Fge=w?R(x) and the Coriolis force Fgo=2[twX v]. Their components
along the coordinate axes have the form

F, = @’R(z) cos & = 200, Fy = —0?R(z) sin @ F 20u,

where the upper signs correspond to a counterclockwise rotation of the spiral and the lower to clockwise rota-
tion. The angle a between the centrifugal force vector and the positive direction of the tangent is related to
the polar angle ¢ by the equations
sina = 6/} 0% + 1, cos & = 1ye® - 1.
We use the following boundary and initial conditions:
for y=0 u=0, v=20, ¢=0,
for y = H(x), duldy = 0, p = const, ¢ = ¢cp,

for. £ =0,c =0,

where the equation of the surface H(x) is determined from the solution of Egs. (1) and (2), taking account of
the kinematic condition

= udH/dz

on the boundary surface.
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We construct dimensionless equations from (1) and (2) by introducing the following transformations:
= Upl, Y = Opy, U = (up/Re)v, z = 6,,Re;, ¢ = cpe,
where the film thickness 6p in the stabilized region, found from the solution of Eqs. (1), has the form

/5

o=V a’

In thedimensionless equations we transform fromthe variables (%, 37) to(5,r§) with d&x=V@+ 1 #/E1 E5 Re,
where E1=§/Re/Ga=6p/ho is the ratio of the thickness of the boundary layer to the original thickness of the
liquid film h,, Ga = w2ARS/v? is the Galileo number, Re =3q/4 is the modified Reynolds number (q is the flow

‘rate of the liquid film), and E5 =hy/A is the dimensionless characteristic of the spiral. Then the system of
equations and the boundary conditions in the coordinates (6, y) describing the motion of a thin layer on the
inner surface of the spiral channel take the form (omitting bars over symbols)
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A@ou _og % _9g c¢=1.
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for y= ®)

We solve the problem by the method of equal flow-rate surfaces, which is related to the group of colloca-
tion methods [2]. We introduce the lines y =yk (x) into the flow field, and the notation

up(2) = ulz, ya(2)]; wle) = viz, yu(@)l; (@) = cle, yu()l

We set ourselves the goal of reducing the problem of flow development to the numerical determination of the
functions uy(x), vi(x), and the interphase surface H(x). We define Yk 2§ a line of equal flow rate; then uy(x)
and vi(x) are connected by the relation

E5 E1 Re '
vk—_‘.’/ez+1 h()dB’ (6)

which follows from the conservation of flow rate and the equation of continuity. In addition, the equation of
continuity is equivalent to the following system of equations:

Ilh(ﬂ
udy = const,, £=2,3,...,N.
Vp-1(2)

Evaluating these integrals by the trapezoidal rule with a uniform error estimate with respect to the variable
6 having the third order of smallness 0,= {max [¥, — ¥, 1]}3, we obtain a system of linear algebraic equations
2 0

of the form
Ur(x) — Yp—r(®@)(ur(®) + up—1(2)) = consty 4 0. Vi)

After differentiating both sides of (7) with respect to 8 we obtain a system of ordinary differential equations for
determining the surfaces of equal flow rate yi(x):

Wy _ Wpt  Yn T Yn—t (d_u;;; duk-i)_ (8)
B T T8 w,tu,_,\d0 a8 :
The derivatives with respect to the independent variable § have the form

dgy @ aq)dy] _
dﬁ_[0+ayd6 0 (9)

where ¢ =uy, pg, Ck-
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Expressing the dq,/30 from (9), substituting them into Eqs. (3) and (4), and using(6), we reduce the
problem to the following system of ordinary differential equations:

E5E{iRe du, E5 E1 Re [dpk ap, dyk] 8%, (10)
—=Ur T = L xn " =18 " a0 burut ]
Vo1 a8 VorF1 ‘dB dy, df E
ap,  dpyq , 4M, 1)
e
<y .
ESEiRe 9o 3 0% (12)

where
43

M@ = | (B5B1 24 p)dus

yvh—1

apg_ uﬁ —
=Py + ESBA gl k=23, ..., N,

To evaluate the second derivatives with respect to y in Egs. (10) and (12) we write the solutions for uy and cj
as expansions in a complete set of basis functions satisfying the homogeneous boundary conditions (5). In the
present paper the systems of basis functions for velocity and concentration were chosen, respectively, in

the form

9 5 ' .
Vs (2) = (j’_::'" - "lh) W, Kiy(z)= % (nl —niH) i,

and the orthogonal Chebyshev polynomials of the first kind were used in the form
. ) R
Vs (2) = Toea () — T4 0) — (3 (ma) — T O (L)',
K135 (z) = Tis () + T341 0) (20 — mp — 1),

where everywhere in these expressions
(@) = p@/H@), j=1,.. ., N k=1, ..,N.

The results obtained by using different sets of basis functions did not differ appreciably, but the required
accuracy was attained with fewer terms when using the Chebyshev polynomials.

The solutions for uk(x) and ck(x) were written as
: N
uy (2) = ,-Zi Aj(z)Vyj(2),

N
¢, (2) = J_giAi, (z) K1;; (2),
j=4,..,N, k=1,...,N,

which are valid for arbitrary values of the independent variable x. This system of linear algebraic equations
is used to determine the expansion coefficients Aj(x), Alj(x) which are involved in the calculation of the second
derivatives with respect to y on the k-th coordinate surface 92wy /dy? and d%cy/dy%.

The system of nonlinear ordinary differential equations (8), (10)-(12) was solved by the Runge—Kutta
method. Since dP;/d is indeterminate, the right-hand sides of Egs. (8), (10)-(12) were determined in two
stages: 1) The pivotal coefficients were calculated and used to find the unknown boundary condition; 2) the
right-hand sides were evaluated correctly. With this in mind Egs. (8), (10)-(12) were reduced to the form

du dp dyh
o tivgg T Vg = Bu
dyy, dy,_4 du, duy 4 .
% ——ap Tt S de+Sk_ @ =0
Py Pyt | 9 duy_y .
o T Oty =% k=2 N,

1 179 ,024-1 E5B1(62+2) »
Lk = Tk’y lvh = 'Z;(]:E 92+2— (62+1)3/2 uk)y
_ 9 @+ 1)%2 | 3VEET1 Py T St
= E5Eifes, (0°+2), 'ESEiReu, 5,27 “F  z+ Uy

(13)

R
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We write the sought functions duk/dé, dyi/de, dpk/ df in the form of pivotal relations:

duy/d® = Uy + Updp,/do, dy,/d® = Y, -+ Yudp,/de,
dpy/d8 = P, + P,dp,/db.
Substituting these expressions into (13) and taking account of the fact that Ug_y, Ug_y, Yioy, Yiogs Piogy lgk_i

are known, we obtain explicit expressions for the pivotal coefficients in the form of the following recurrence
relations:

= [Ry — Np(Yioy — SaUpey) — La(Qn + Proz — ThU— ) V(1 — 1,00 — NiSh)s

Oy = WalSkUhr — Ppmt) + Lu(Tulpms — Brc) V(1 — LQy — NS,
Y, = —8,Upy + Y1 — SpUs, (14
i}k == —Skﬁk-—l + ?k-l — 8, U,
Py = Qp + Py — TkUh-—1 - QhUkv
Py = Prey — TaUny — Q0.
From the condition
dUy/d0 = dy,/dB = dpy/dé = 0 (15)
and from Eqgs. (13) we find the values of the pivotal coefficients for k=2:
Uy = (R, — L,Qy)/(1 — LQ, — N,Sy), U, = —=Lof(1 — LyQy — N,S5),
Y, = —8,Us ¥y = —8,0,, P, = Q, — Q,U,, B, =1— 0,0,
Then using Egs. (14) we find the values of the pivotal coefficients for any k. In particular for k= N we have
dpn/d o=PyN+ PNdpi/dG but dpy/dé is known from (15) and, consequently, dp,/d6={dpp/d6 — PN)/PN Then

by a reverse pivotal we calculate the values of the rlght hand sides of the system of dlfferentlal equations
(13).

After determining the velocity field uy the system of differential equations was solved for the concentra-
tion in the liquid layer by the Runge—Kutta method.

The mags~transfer coefficient in the liquid film was calculated from the expression
’ ac ’ d I
D\-— == \ ucdy, (16)
b

which was obtained after integrating the convective diffusion equation across a liquid film of variable thickness
and using (6) at the interface.

Averaging Eq. (16) with respect to the longitudinal coordinate over a portion with a characteristic length
L we obtain '

L L UN
1 j‘D("‘) dz = 5[ d jucd ]da:
——— iy — — . 1
L) Y\ gy rjl=) 4 (1n

After averaging both sides of Eq. (17) over the surface of contact, evaluating the integral using the boundary
condition (5), and introducing the dimensionless variable x=6p Re Prx,weobtain an expression for the average
mass-iransfer coefficient in the liguid film:
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The algorithm described above was used to calculate the velocity field, concentrations, surface of
separation, and tangential stress on the wall of the spiral channel in the entrance region as a function of the
slit width, the Reynolds number, and the dimensionless characteristic of the spiral E5.

Figure 1 shows the characteristic form of the development of the velocity profile in the liquid film at
various cross sections for Re=100, E5=0.1, and E1=1/3. Figure 2 shows the characteristic dependence of
the local tangential stress 7 on the dimensionless length of the spiral for Re=300, E5=0.1; 1) E1=0.1; 2) 1/7;
3) 1/3; 4) 2/3; 5) 1; 6) 2. The tangential stress varies sharply in the region near the edge of the film distrib-

“utor; for 6p/hy>1 it decreases near the edge of the film distributor and for 8,/h)< 1 it increases. Figure
3 shows how the ratio of the local tangential stress to the tangential stress in tﬁe stabilized region depends
on the dimensionless length of the spiral for Re=300, E5=0.,1;1)E1=0.1; 2) 1/7; 3) 1/3; 4) 2/3; 5) 1. The ratio
7/7p for ép/hy< 1 increases with the distance from the edge of the film distributor. The dimensionless
distance X at which the ratio T/Tp approaches unity depends on El, increasing as E1 decreases.

A comparison of the results of a calculation of the velocity and tangential stress in a liquid film running
down a vertical channel by gravity [3] and a film on a rotating Archimedes spiral shows that these quantities
develop in the same way.
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Figure 4 shows the characteristic form of the dependence of HT? on the dimensionless length of the spiral
for a) Re=100, E5=0.1, E1=0.1 and 1) Pr=100, 2) 300, 3) 1000; b) Re=100, E5 = (.1, Pr = 300 and 1) E1 = 0.1,
2) 0.4, 3) 1, 4) 1.6; ¢) Re=100, E1=0.1, Pr=300 and 1) E5=0.1, 2) 0.5, 3) 1; d) E5=0.1, Pr=300, E1=0.1 and
1) Re=100, 2) 500, 3) 1000. Itis clear that large values of HT? correspond to large values of E1, E5, Re, and
Pr. These parameters have little effect on the intercept on the HT? axis which varies from 0.85 + 1072 to
1072 and can be taken as 0.009.

Over the range of parameters investigated HT? can be approximated to within about 5% by the expression
= (3.5 + 0.7E4 + 1.2E5 + 0.001Re -+ 0.0007Pr)z + 0.009, (18)

Taking account of (18) the expression for the average mass-transfer coefficient in the liquid phase can be
written in the form

‘/2Di/2

—
= ]/3 50,7 E1 +1,2E5 40,001 Re +0.0007 Pr +0.00922 5
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